Molecular characterisation of two paralogous SPO11 homologues in Arabidopsis thaliana.
نویسندگان
چکیده
The Spo11 protein of yeast has been found to be covalently bound to double-strand breaks in meiosis, demonstrating a unique role of the protein in the formation of these breaks. Homologues of the SPO11 gene have been found in various eukaryotes, indicating that the machinery involved in meiotic recombination is conserved in eukaryotes. Here we report on SPO11 homologues in plants. In contrast to what is known from other eukaryotes, Arabidopsis thaliana carries in its genome at least two SPO11 homologues, AtSPO11-1 and AtSPO11-2. Both genes are not more closely related to each other than to other eukaryotic SPO11 homologues, indicating that they did not arise via a recent duplication event during higher plant evolution. For both genes three different poly-adenylation sites were found. AtSPO11-1 is expressed not only in generative but also to a lesser extent in somatic tissues. We were able to detect in different organs various AtSPO11-1 cDNAs in which introns were differently spliced-a surprising phenomenon also reported for SPO11 homologues in mammals. In the case of AtSPO11-2 we found that the 3' end of the mRNA is overlapping with a mRNA produced by a gene located in inverse orientation next to it. This points to a possible antisense regulation mechanism. Our findings hint to the intriguing possibility that, at least for plants, Spo11-like proteins might have more and possibly other biological functions than originally anticipated for yeast.
منابع مشابه
Yeast Two Hybrid cDNA Screening of Arabidopsis thaliana for SETH4 Protein Interaction
SETH4 coding sequence with 2013 bp is a member of gene family expressed in gametophytic tissues of Arabidopsis thaliana. This fragment was PCR amplified using Kod Hi Fi DNA polymerase enzyme. This fragment was cloned into pGBKT7 bate vector and transformed E. coli DH5? cells containing vector were selected on LB medium containing Kanamycin. Finally, pGBKT7-SETH4 bate was transformed into yeast ...
متن کاملمشکلات روشهای موجود و ارائه دو روش جدید کشت هیدروپونیک گیاه آرابیدوپسیس تالیانا
Arabidopsis thaliana is a suitable model plant for genetic and molecular biology studies in higher plants. However, its hydroponic culture for biochemical and physiological studies is a challenge due to small size, capillary roots and little biomass at maturity. Several cultural systems have been suggested for Arabidopsis thaliana hydroponic culture, each having special advantages and disadvant...
متن کاملA High Throughput Genetic Screen Identifies New Early Meiotic Recombination Functions in Arabidopsis thaliana
Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a h...
متن کاملDifferential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses
The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...
متن کاملThe impacts of TRR14 over-expression on Arabidopsis thaliana growth and some photosynthetic parameters
Background: TRR14 protein is a small member of a multi-gene family in Arabidopsis and is the first ones found during screening of seedlings for their resistant to the trehalose sugar.Objectives: Characterization ofTRR14 over-expressed plants with respect to morphological changes, growth and photosynthesis related parameters.Materials and methods: TRR14gene was isolated from Arabidop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 28 7 شماره
صفحات -
تاریخ انتشار 2000